

Ray Optics & Optical Instrument

Q.No.1:

Diameter of a plano-convex lens is 6 cm and thickness at the centre is 3 mm. If speed of light in material of lens is 2×10^8 m/s, the focal length of the lens is: JEE 2013

- **A.** 15 cm
- **B.** 20 cm
- **C.** 30 cm
- **D.** 10 cm

Q.No.2:

The graph between angle of deviation (δ) and angle of incidence (i) for a triangular prism is represented by:

JEE 2013

Q.No.3: A thin convex lens made from crown glass $\left(\mu = \frac{3}{2}\right)$ has focal length *f*.

When it is measured in two different liquids of refractive indices $\frac{4}{3}$ and $\frac{5}{3}$, it has focal lengths f_1 and f_2 , respectively. The correct relation between the focal lengths is

- **A.** $f_2 > f$ and f_1 becomes negative
- **B.** f_1 and f_2 become negative

C.
$$f_1 = f_2 < f$$

D. $f_1 > f$ and f_2 becomes negative

Q.No.4: A green light is incident from water on the air - water interface at critical angle (θ). Select the **correct** statement.

- **A.** The spectrum of visible light whose frequency is more than that of green light will come out to the air medium.
- **B.** The entire spectrum of visible light will come out of water at various angles to the normal.
- **C.** The entire spectrum of visible light will come out of water at an angle of 90° to the normal.
- **D.** The spectrum of visible light whose frequency is less than that of green light will come out to the air medium.

Q.No.5: Monochromatic light is incident on a glass prism of angle *A*. If the refractive index of the material of the prism is μ , then a ray, incident at an angle θ on the face AB, would get transmitted through the face AC of the prism provided

Q.No.6: An observer looks at a distant tree of height 10 m with a telescope of magnifying power of 20. To the observer the tree appears: **JEE 2016**

- A. 10 times nearer
- B. 20 times taller
- C. 20 times nearer
- **D.** 10 times taller.

Q.No.7: A diverging lens with magnitude of focal length 25 cm is placed at a distance of 15 cm from a converging lens of magnitude of focal length 20 cm. A beam of parallel light falls on the diverging lens. The final image formed is:

JEE 2017

JEE 2015

- A. real and at a distance of 6 cm from the convergent lens
- **B.** real and at a distance of 40 cm from convergent lens
- **C.** virtual and at a distance of 40 cm from convergent lens
- **D.** real and at distance of 40 cm from the divergent lens

Q.No.8: A convex lens is put 10 cm from a light source and it makes a sharp image on a screen, kept 10 cm from the lens. Now a glass block (refractive

index 1.5) of 1.5 cm thickness is placed in contact with the light source. To get the sharp image again, the scree is shifted by a distance d. Then d is: **JEE 2019**

A. 1.1 cm away from the lens

B. 0

- **C.** 0.55 cm towards the lens
- D. 0.55 cm away from the lens

Q.No.9: Two plane mirrors are inclined to each other such that a ray of light incident on the first mirror (M_1) and parallel to the second mirror (M_2) is finally reflected from the second mirror (M_2) parallel to the first mirror (M_1) . The angle between the two mirrors will be:

- **A.** 45°
- **B.** 60°
- **C.** 75°
- **D.** 90°

Q.No.10: A plano convex lens of refractive index μ_1 and focal length f_1 is kept in contact with another plano concave lens of refractive index μ_2 and focal length f_2 . If the radius of curvature of their spherical faces is R each and $f_1 = 2f_2$, then μ_1 and μ_2 are related as: **JEE 2019**

- **A.** $\mu_1 + \mu_2 = 3$
- **B.** $2\mu_1 \mu_2 = 1$
- **C.** $3\mu_2 2\mu_1 = 1$
- **D.** $2\mu_2 \mu_1 = 1$